0/70 completed
Pricing Framework Fundamental

Implied Probability

Convert betting odds to probabilities. The implied probability reveals what the odds assume about win likelihoodโ€”and the house edge built in.

๐Ÿ”ฎ The Conversion Formula

Implied Probability = 1 / Decimal Odds

Example: At 1.91x payout, implied probability = 1/1.91 = 52.4%. For a true 50/50 bet, the extra 2.4% is the house edge.

Odds Converter

Decimal Odds 1.91x
1.01x 10x
Decimal
1.91
American
-110
Fractional
91/100

๐Ÿ“Š Implied Analysis

Implied Probability 52.36%
Breakeven Win Rate 52.36%
House Edge (vs 50%) 4.7%

If true probability is 50%, the house keeps 4.7% on average.

๐Ÿ“‹ Common Odds Reference

DescriptionDecimalAmericanImplied %$100 Profit
Even Money2.00+10050.0%$100
Standard Vig1.91-11052.4%$91
Heavy Favorite1.25-40080.0%$25
Underdog3.00+20033.3%$200
Long Shot10.00+90010.0%$900

๐Ÿ“ˆ Overround (Total Vig)

For a two-sided market (Over/Under), the overround is the sum of implied probabilities minus 100%:

Overround = ฮฃ(Implied Probs) - 100%

Example: Over at 1.91 (52.4%) + Under at 1.91 (52.4%) = 104.7%
Overround = 4.7% (house edge split across both sides)

Why It Matters

  • โ†’ Higher overround = more house edge = worse for bettors
  • โ†’ Sharp bettors seek lowest vig markets
  • โ†’ For pricing: balance vig against user retention

๐ŸŽฏ True Probability vs Implied

True Probability

The actual likelihood of an outcome occurring. What your models predict.

50.0%

Implied Probability

What the odds suggest. Includes house edge baked in.

52.4%

Your Edge

When true > implied, you have +EV. This is the gap.

-2.4%

R Code Equivalent

# Odds conversion functions
implied_prob <- function(decimal_odds) 1 / decimal_odds

decimal_to_american <- function(decimal) { 
  ifelse(decimal >= 2, 
         round((decimal - 1) * 100),
         round(-100 / (decimal - 1)))
}

american_to_decimal <- function(american) { 
  ifelse(american > 0,
         american / 100 + 1,
         100 / abs(american) + 1)
}

# Calculate overround
overround <- function(odds_over, odds_under) { 
  implied_prob(odds_over) + implied_prob(odds_under) - 1
}

# Example
decimal <- 1.91
cat(sprintf("Implied: %.2f%%\n", implied_prob(decimal) * 100))
cat(sprintf("American: %+d\n", decimal_to_american(decimal)))
cat(sprintf("Overround (vs 1.91 under): %.2f%%\n", overround(decimal, 1.91) * 100))

โœ… Key Takeaways

  • โ€ข Implied probability = 1 / decimal odds
  • โ€ข Overround measures total house edge
  • โ€ข Standard vig (-110/-110) = 4.5% overround
  • โ€ข Edge = True probability - Implied probability
  • โ€ข Positive edge โ†’ bet is +EV
  • โ€ข Convert between formats to compare across books

Pricing Models & Frameworks Tutorial

Built for mastery ยท Interactive learning