0/70 completed
Infrastructure

Data Pipelines

Move data from sources to destinations reliably. The backbone of any data-driven betting operation.

๐Ÿ“Š ETL/ELT Pipeline Stages

๐Ÿ“ฅ

Ingest

Collect raw data from sources

KafkaAirflowFivetran
โ†’
๐Ÿ”„

Transform

Clean, validate, feature eng

dbtSparkPandas
โ†’
๐Ÿ’พ

Store

Data warehouse/lake

SnowflakeBigQueryS3
โ†’
๐Ÿš€

Serve

APIs, dashboards, models

FastAPITableauMLflow

๐Ÿ“ฅ Betting Data Sources

Odds Feeds

Frequency Real-time
Volume High

Pinnacle, Betfair API

Stats Providers

Frequency Daily
Volume Medium

Sportradar, Stats LLC

Betting Activity

Frequency Real-time
Volume Very High

Internal DB

External Data

Frequency Weekly
Volume Low

Weather, injuries

๐Ÿ–ฅ๏ธ Pipeline Status

PipelineStatusLast RunDuration
odds_ingestrunning2 min ago45s
player_stats_dailysuccess4h ago12m
feature_engineeringsuccess1h ago8m
model_trainingpendingscheduled-
liability_snapshotfailed30 min ago2m

โœ… Best Practices

Idempotency

Same input โ†’ same output, safe to retry

Backfill Support

Ability to reprocess historical data

Schema Evolution

Handle changing data formats gracefully

Data Quality

Validation, anomaly detection, alerts

Lineage Tracking

Know where data came from

Monitoring

Latency, freshness, error rates

Python / Airflow Example

# Airflow DAG for odds ingestion
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta

default_args = { 
    'retries': 3,
    'retry_delay': timedelta(minutes=5),
}

def ingest_odds():
    """Fetch odds from API and store in raw layer"""
    import requests
    response = requests.get("https://api.oddsapi.com/v4/sports/...")
    # Store to S3/GCS
    
def transform_odds():
    """Clean and standardize odds data"""
    # dbt run --select odds_staging
    
def validate_data():
    """Run data quality checks"""
    # Check for nulls, outliers, staleness

with DAG('odds_pipeline', 
         schedule_interval='*/5 * * * *',  # Every 5 min
         default_args=default_args) as dag:
    
    ingest = PythonOperator(task_id='ingest', python_callable=ingest_odds)
    transform = PythonOperator(task_id='transform', python_callable=transform_odds)
    validate = PythonOperator(task_id='validate', python_callable=validate_data)
    
    ingest >> transform >> validate

โœ… Key Takeaways

  • โ€ข Pipelines: Extract โ†’ Transform โ†’ Load
  • โ€ข Real-time for odds, batch for stats
  • โ€ข Idempotency enables safe retries
  • โ€ข Use Airflow/Prefect for orchestration
  • โ€ข dbt for transformations in warehouse
  • โ€ข Monitor freshness and data quality

Pricing Models & Frameworks Tutorial

Built for mastery ยท Interactive learning