0/70 completed
Metrics & Evaluation Interactive

MAE & RMSE

Measure regression model accuracy. MAE = average error, RMSE = penalizes large errors more. Essential for player projection evaluation.

๐Ÿ“Š The Formulas

MAE

1/n ร— ฮฃ|y - ลท|

Mean Absolute Error. Average of absolute errors.

MSE

1/n ร— ฮฃ(y - ลท)ยฒ

Mean Squared Error. Squares penalize large errors.

RMSE

โˆšMSE

Root MSE. Same units as target variable.

Error Parameters

Bias (systematic error) 0
-5 5
Spread (random error) 3
1 8
Outlier % (large errors) 10
0 30

๐Ÿ“Š Error Metrics

Mean Error -0.06
MAE 2.74 pts
RMSE 4.14 pts
RMSE / MAE 1.51 (outliers!)

Error Distribution

โš ๏ธ High RMSE/MAE ratio suggests outliers

Metric Comparison

MAE

2.74

Linear penalty

Robust to outliers

MSE

17.10

Squared penalty

Differentiable

RMSE

4.14

Same units as target

Interpretable

๐ŸŽฏ When to Use Each

Use MAE When...

  • โ€ข Outliers are expected and shouldn't dominate
  • โ€ข All errors matter equally (cost is linear)
  • โ€ข You want median-like behavior
  • โ€ข Interpretability is key ("avg 3 pts off")

Use RMSE When...

  • โ€ข Large errors are especially bad
  • โ€ข Cost grows with error magnitude (squared)
  • โ€ข You need differentiable loss for training
  • โ€ข Data is relatively clean

R Code Equivalent

# Calculate error metrics
calculate_metrics <- function(actual, predicted) { 
  error <- predicted - actual
  
  mae <- mean(abs(error))
  mse <- mean(error^2)
  rmse <- sqrt(mse)
  me <- mean(error)  # Mean error (bias)
  
  list(
    mae = mae,
    mse = mse,
    rmse = rmse,
    bias = me,
    rmse_mae_ratio = rmse / mae  # >1.25 suggests outliers
  )
}

# Example
actual <- c(22.5, 18.3, 25.1, 20.8)
predicted <- c(23.1, 17.5, 26.0, 19.2)

metrics <- calculate_metrics(actual, predicted)
cat(sprintf("MAE: %.2f, RMSE: %.2f\n", metrics$mae, metrics$rmse))

โœ… Key Takeaways

  • โ€ข MAE = average absolute error (robust)
  • โ€ข RMSE = penalizes large errors more
  • โ€ข RMSE โ‰ฅ MAE always (equality when all errors equal)
  • โ€ข High RMSE/MAE ratio โ†’ outliers present
  • โ€ข Check bias (mean error) separately
  • โ€ข For player props: MAE often more practical

Pricing Models & Frameworks Tutorial

Built for mastery ยท Interactive learning